Что такое MPEG-2, MPEG-4

Статьи о спутниковом ТВ

Модераторы: Administrator, KOSTEY, boom, suen, Официальный представитель, Модераторы

Аватара пользователя
Administrator
Сообщения: 159996
Зарегистрирован: 27 июн 2011 19:11
Пол: Мужской
Зодиак:: Овен
Страна:: Украина
Имя: Роман
Мой телевизор :: BRAVIS LED-39G5000 + T2 , BRAVIS LED-1697 bleck, Liberton D-LED 3225 ABHDR,
Мой ресивер:: STRONG 4450, Gi HD Mini, Trimax TR-2012HD plus (Т2), Beelink W95 (2Гб/16Гб), X96 X4 (905X4/2GB/16GB)
Мои спутники:: 4°W,5°E,13°E - ( Два штука ) + 36°E KУ
Благодарил (а): 1832 раза
Поблагодарили: 6474 раза

MPEG-4

MPEG-4 — это международный стандарт, используемый преимущественно для сжатия цифрового аудио и видео. Он появился в 1998 году, и включает в себя группу стандартов сжатия аудио и видео и смежные технологии, одобренные ISO — Международной организацией по стандартизации/IEC Moving Picture Experts Group (MPEG). Стандарт MPEG-4 в основном используется для вещания (потоковое видео), записи фильмов на компакт-диски, видеотелефонии (видеотелефон) и широковещания, в которых активно используется сжатие цифровых видео и звука.

MPEG-4 включает в себя многие функции MPEG-1, MPEG-2 и других подобных стандартов, добавляя такие функции как поддержка языка виртуальной разметки VRML для показа 3D объектов, объектно-ориентированные файлы, поддержка управления правами и разные типы интерактивного медиа. AAC (Advanced Audio Codec — или Улучшенный Аудио Кодек) был стандартизован как дополнение к MPEG-2 (часть 3), был также расширен и включен в MPEG-4.

MPEG-4 всё ещё находится на стадии разработки и делится на несколько частей. Ключевыми частями стандарта MPEG-4 являются часть 2 (MPEG-4 part 2, включая Advanced Simple Profile, используемый такими кодеками как DivX, XVID, Nero Digital и 3ivx, а также Quicktime 6) и часть 10 (MPEG-4 part 10/MPEG-4 AVC/H.264 или Advanced Video Coding, используемый такими кодеками как x264, Nero Digital AVC, Quicktime 7, а также используемый в форматах DVD следующего поколения, таких как HD DVD и Blu-Ray Disc).

MPEG-4 предоставляет комплект технологий для разработчиков, для различных поставщиков услуг и для конечных пользователей.
* MPEG-4 позволяет различным разработчикам создавать объекты услуг и технологий, например, цифровое телевидение и мультипликацию, WWW и их расширения, обладающие лучшей адаптивностью и гибкостью при улучшении качества. Этот стандарт позволяет разработчикам более эффективно управлять контентом и более эффективно бороться против пиратства.
* Различные сетевые провайдеры могут использовать MPEG-4 для обеспечения прозрачности данных. С помощью стандартных процедур любые данные могут быть интерпретированы и преобразованы в различные сигналы, которые можно передать по любой существующей сети.
* Формат MPEG-4 предоставляет конечным пользователям широкий спектр возможностей, позволяющих взаимодействовать с различными анимированными объектами.
Формат MPEG-4 может позволить выполнять различные функции, среди которых следующие:
* Аудио потоки, видео и аудиовизуальные данные могут быть как естественными, так и искусственно созданными. Это означает, что они могут быть как записаны на видеокамеру или микрофон, так и созданы с помощью компьютера и специального программного обеспечения.
* Мультиплексирование и синхронизация данных, связанных с медийным объектом, в том смысле, что они могут быть переданы через сетевые каналы.
* Взаимодействие с аудиовизуальной сценой, которая формируется на стороне приемника.

Части стандарта MPEG-4

MPEG-4 состоит из нескольких стандартов, называемых «parts», включая следующие:

* Part 1 (ISO/IEC 14496-1): Systems: Описывает синхронизацию и мультиплексирование видео и аудио. Например транспортный поток.
* Part 2 (ISO/IEC 14496-2): Visual: Описывает кодеки для видео (видео, статических текстур, синтетических изображений и т. д.). Один из нескольких «профилей» в Part 2 — это Advanced Simple Profile (ASP) — наиболее широко используемая часть стандарта MPEG-4.
* Part 3 (ISO/IEC 14496-3): Audio: Набор кодеков для сжатия звука и речи, включая Advanced Audio Coding (AAC) и несколько инструментов для обработки звука (речи).
* Part 4 (ISO/IEC 14496-4): Conformance: Описывает процедуру тестирования на совместимость частей стандарта.
* Part 5 (ISO/IEC 14496-5): Reference Software: Содержит программы (software) для демонстрации и более ясного описания других частей стандарта.
* Part 6 (ISO/IEC 14496-6): (Delivery Multimedia Integration Framework-DMIF).
* Part 7 (ISO/IEC 14496-7): Optimized Reference Software: Provides examples of how to make improved implementations (e.g., in relation to Part 5).
* Part 8 (ISO/IEC 14496-8): Carriage on IP networks: Specifies a method to carry MPEG-4 content on IP networks.
* Part 9 (ISO/IEC 14496-9): Reference Hardware: Provides hardware designs for demonstrating how to implement the other parts of the standard.
* Part 10 (ISO/IEC 14496-10): Advanced Video Coding: A codec for video signals which is also called AVC and is technically identical to the ITU-T H.264 standard.
* Part 11 (ISO/IEC 14496-11): Scene description and Application engine, also called BIFS; can be used for rich, interactive content with multiple profiles, including 2D and 3D versions.
* Part 12 (ISO/IEC 14496-12): ISO Base Media File Format: A file format for storing media content.
* Part 13 (ISO/IEC 14496-13): Intellectual Property Management and Protection (IPMP) Extensions.
* Part 14 (ISO/IEC 14496-14): MPEG-4 File Format: The designated container file format for MPEG-4 content, which is based on Part 12.
* Part 15 (ISO/IEC 14496-15): AVC File Format: For storage of Part 10 video based on Part 12.
* Part 16 (ISO/IEC 14496-16): Animation Framework eXtension (AFX).
* Part 17 (ISO/IEC 14496-17): Timed Text subtitle format.
* Part 18 (ISO/IEC 14496-18): Font Compression and Streaming (for OpenType fonts).
* Part 19 (ISO/IEC 14496-19): Synthesized Texture Stream.
* Part 20 (ISO/IEC 14496-20): Lightweight Scene Representation (LASeR) (not yet finished — reached «FCD» stage in January 2005).
* Part 21 (ISO/IEC 14496-21): MPEG-J Graphical Framework eXtension (GFX) (not yet finished — at «FCD» stage in July 2005, FDIS January 2006).
* Part 22 (ISO/IEC 14496-22): Open Font Format Specification (OFFS) based on OpenType (not yet finished — reached «CD» stage in July 2005)

Также внутри частей («parts») определены профили стандартов, поэтому реализация какой-то части стандарта ещё не означает полной поддержки этой части.

MPEG-1, MPEG-2 и другие наборы стандартов от MPEG.

Лицензирование

В MPEG-4 содержатся патентованные технологии, которые требуют лицензирования в странах, признающих патенты на программное обеспечение. Патенты, покрывающие MPEG-4, принадлежат двум десяткам компаний. MPEG Licensing Authority может лицензировать пакет, необходимый для поддержки MPEG-4 от широкого спектра компаний (аудио лицензируется независимо). Осуществить лицензирование за один шаг сейчас невозможно.

Несколько источников в Интернете утверждают, что AT&T пытается возбудить иск против компании Apple по поводу нарушения патента MPEG-4. Это действие AT&T против Apple показывает, насколько сложно узнать, какие компании имеют патенты, покрывающие MPEG-4.

Альтернативы

Альтернативы с открытыми исходными текстами, позволяющие инкапсулировать AV.

Контейнеры

* OGG — создан компанией Xiph Foundation.
o См. также: OGM — создан на основе OGG, но не является официальным стандартом фонда Xiph.Org.
* Matroska — файлы .mkv и .mka.
* NUT — разработан группой MPlayer.

Видеокодеки

* DivX — кодек, основанный на стандарте MPEG-4. Версия 3.11 сходна MPEG-4 и H.263, но имеет отличия, например, заголовок кадра. Версия 4 основана на MPEG-4 SP, версия 5 и выше — на MPEG-4 ASP.
* x264 — H.264 (MPEG-4 part 10) реализация.
* XVID — кодек MPEG-4 part 2, совместимый с DivX.
* FFmpeg-кодеки — кодеки в библиотеке libavcodec из проекта FFmpeg (FFV1, Snow, MPEG-1, MPEG-2, MPEG-4 part 2, MSMPEG-4, H.264, WMV2, SVQ3, MJPEG, HuffYUV, Indeo и другие).
* Tarkin — экспериментальный видеокодек, сжимающий с потерями, разрабатываемый Xiph.org Foundation и основанный на 3-D-вейвлет сжатии.
* Lagarith — видеокодек без потерь.
* Theora — основан на VP3, часть OGG Project.
* Dirac — основанный на вейвлетах кодек, созданный BBC.
* Huffyuv — кодек без потерь от BenRG.

Аудиокодеки

* FLAC — сжатие без потерь.
* iLBC — сжатие звука с низким битрейтом.
* Musepack — сжатие с потерями; попытка воспроизвести формат MP3.
* Speex — сжатие с низким битрейтом, в основном речи.
* TTA — сжатие без потерь.
* Vorbis — сжатие с потерями; разработан Xiph.org.
* WavPack — сжатие с потерями/без потерь.
Аватара пользователя
Administrator
Сообщения: 159996
Зарегистрирован: 27 июн 2011 19:11
Пол: Мужской
Зодиак:: Овен
Страна:: Украина
Имя: Роман
Мой телевизор :: BRAVIS LED-39G5000 + T2 , BRAVIS LED-1697 bleck, Liberton D-LED 3225 ABHDR,
Мой ресивер:: STRONG 4450, Gi HD Mini, Trimax TR-2012HD plus (Т2), Beelink W95 (2Гб/16Гб), X96 X4 (905X4/2GB/16GB)
Мои спутники:: 4°W,5°E,13°E - ( Два штука ) + 36°E KУ
Благодарил (а): 1832 раза
Поблагодарили: 6474 раза

MPEG2 и MPEG4 - описание форматов
mpeg.gif
На данный момент большинство операторов кабельного и спутникового телевидения используют стандарт MPEG2 для передачи своих сигналов. Стандарт MPEG2 был разработан рабочей группой Moving Pictures Experts Group Международной Организации Стандартизации. MPEG2 опубликован как международный стандарт ISO/IEC 13818. Данный стандарт описывает лишь общие принципы компрессии, оставляя детали для изготовителей кодеров.
В основе алгоритма сжатия заложены особенности восприятия изображения человеком. Например, глаз человека намного лучше воспринимает градации яркости, чем цветности; градации одних цветов воспринимаются лучше, других - хуже.
Кроме того, чаще всего на экране показывается неподвижный фон и несколько движущихся объектов. Поэтому достаточно лишь передать информацию о базовом кадре, а затем передавать кадры, содержащие информацию о движущихся объектах.
Еще один принцип, который применяется при компрессии изображения в стандарте MPEG2 - это отбрасывание малозначимой информации, аналогичный принципам, используемым в графическом формате JPEG.
Но вернемся собственно к теме нашего разговора. Развитием технологий управляет принцип: лучше, красивее, больше c меньшими затратами и по меньшей цене. В нашем случае подразумевается картинка лучшего качества, при меньшей ширине информационного канала (спутникового, кабельного, эфирного). Совершенствование видео кодеков формата MPEG2 привело к тому, что сейчас для передачи изображения требуется канал с пропускной способностью в 2 раза меньше, чем в начале эры цифрового вещания. С течением времени стало очевидным, что новые разработки позволяют значительно уменьшить объем передаваемой информации, но они не соответствуют существующему формату MPEG2. Поэтому перед специалистами встала задача разработки более универсального и соответствующего современным технологиям стандарта.
Для цифрового спутникового телевидения, использующего MPEG2, с разрешением 720 на 576 точек максимальная скорость информационного потока 15 Мбит/сек, а практически используемая скорость потока - 3-4 Мбит/сек. На одном транспондере (приемнике - передатчике) на спутнике обычно умещается 8-12 каналов.
Поскольку HDTV предполагает разрешение 1920 на 1080 точек, т.е. площадь экрана в 5 раз больше по сравнению с обычным телевидением, то для вещания одного канала HDTV в стандарте MPEG2 потребовалось бы арендовать половину транспондера.
Новым шагом в развитии алгоритмов сжатия изображения стал стандарт MPEG4. Идея стандарта MPEG4 заключается не в стандартизации одного продукта, а объединении нескольких подстандартов из которых поставщики могут выбрать один, наиболее соответствующий их задачам.

Наиболее важные подстандарты:
ISO 14496-1 (Системы), формат контейнера MP4, анимация/интерактивность (например, DVD меню)
ISO 14496-2 (Видео #1), Продвинутый Простой Профайл ( Advanced Simple Profile - ASP)
ISO 14496-3 (Аудио), Продвинутое Кодирование Аудио ( Advanced Audio Coding - AAC)
ISO 14496-10 (Видео #2), Продвинутое Кодирование Видео ( Advanced Video Coding - AVC), так же известное как H.264.

Я не буду перечислять особенности технологий и алгоритмов, которые применялись при разработке формата MPEG4.
Перейдем к самому важному: совместное применение DVB-S2 (усовершенствованный стандарт цифровой передачи данных) и H.264 позволяет разместить 6-8 каналов в транспондере, но уже HDTV телевидения. Необходимо отметить, что как всегда увеличение качества не проходит бесплатно: значительно возросло количество вычислений как в приемниках так и на передающем оборудовании. К сожалению, это в значительной степени повлияло на стоимость оборудования для потребителей и для вещателей.
Аватара пользователя
Administrator
Сообщения: 159996
Зарегистрирован: 27 июн 2011 19:11
Пол: Мужской
Зодиак:: Овен
Страна:: Украина
Имя: Роман
Мой телевизор :: BRAVIS LED-39G5000 + T2 , BRAVIS LED-1697 bleck, Liberton D-LED 3225 ABHDR,
Мой ресивер:: STRONG 4450, Gi HD Mini, Trimax TR-2012HD plus (Т2), Beelink W95 (2Гб/16Гб), X96 X4 (905X4/2GB/16GB)
Мои спутники:: 4°W,5°E,13°E - ( Два штука ) + 36°E KУ
Благодарил (а): 1832 раза
Поблагодарили: 6474 раза

MPEG: Общая информация

Стандарт сжатия MPEG разработан Экспертной группой кинематографии (Moving Picture Experts Group - MPEG). MPEG это стандарт на сжатие звуковых и видео файлов в более удобный для загрузки или пересылки, например через интернет, формат.

Существуют разные стандарты MPEG (как их еще иногда называют фазы - phase): MPEG-1, MPEG-2, MPEG-3, MPEG-4, MPEG-7.

MPEG состоит из трех частей: Audio, Video, System (объединение и синхронизация двух других).

MPEG-1

По стандарту MPEG-1 потоки видео и звуковых данных передаются со коростью 150 килобайт в секунду -- с такой же скоростью, как и односкоростной CD-ROM проигрыватель -- и управляются путем выборки ключевых видео кадров и заполнением только областей, изменяющихся между кадрами. К несчастью, MPEG-1 обеспечивает качество видеоизображения более низкое, чем видео, передаваемое по телевизионному стандарту.

MPEG-1 был разработан и оптимизирован для работы с разрешением 352 ppl (point per line -- точек на линии) * 240 (line per frame -- линий в кадре) * 30 fps (frame per second -- кадров в секунду), что соответствует скорости передачи CD звука высокого качества. Используется цветовая схема - YCbCr (где Y - яркостная плоскость, Cb и Cr - цветовые плоскости).

Как MPEG работает:

В зависимости от некоторых причин каждый frame (кадр) в MPEG может быть следующего вида:

I (Intra) frame - кодируется как обыкновенная картинка.
P (Predicted) frame - при кодировании используется информация от предыдущих I или P кадров.
B (Bidirectional) frame - при кодировании используется информация от одного или двух I или P кадров
Последовательность кадров может быть например такая: IBBPBBPBBPBBIBBPBBPB...

Последовательность декодирования: 0312645...

Нужно заметить, что прежде чем декодировать B кадр требуется декодировать два I или P кадра. Существуют разные стандарты на частоту, с которой должны следовать I кадры, приблизительно 1-2 в секунду, соответствуюшие стандарты есть и для P кадров (каждый 3 кадр должен быть P кадром). Существуют разные относительные разрешения Y, Cb, Cr плоскостей (Таблица 1), обычно Cb и Cr кодируются с меньшим разрешением чем Y.


Таблица 1
tfn6TPov.png
Для применения алгоритмов кодировки происходит разбивка кадров на макроблоки каждый из которых состоит из определенного количества блоков (размер блока - 8*8 пикселей). Количество блоков в макроблоке в разных плоскостях разное и зависит от используемого формата


Техника кодирования:

Для большего сжатия в B и P кадрах используется алгоритм предсказания движения (что позволяет сильно уменьшить размер P и B кадров -- Таблица 2) на выходе которого получается:

Вектор смещения (вектор движения) блока который нужно предсказать относительно базового блока.
Разница между блоками (которая затем и кодируется).
Так как не любой блок можно предсказать на основании информации о предыдущих, то в P и B кадрах могут находиться I блоки (блоки без предсказания движения).
tfn6TPow.png
Метод кодировки блоков (либо разницы, получаемой при методе предсказание движения) содержит в себе:

Discrete Cosine Transforms (DCT - дискретное преобразование косинусов).
Quantization (преобразование данных из непрерывной формы в дискретную).
Кодировка полученного блока в последовательность.
DCT использует тот факт, что пиксели в блоке и сами блоки связаны между собой (т.е. коррелированны), поэтому происходит разбивка на частотные фурье компоненты (в итоге получается quantization matrix - матрица преобразований данных из непрерывной в дискретную форму, числа в которой являются величиной амплитуды соответствующей частоты), затем алгоритм Quantization разбивает частотные коэффициенты на определенное количество значений. Encoder (кодировщик) выбирает quantization matrix которая определяет то, как каждый частотный коэффициент в блоке будет разбит (человек более чувствителен к дискретности разбивки для малых частот чем для больших). Так как в процессе quantization многие коэффициенты получаются нулевыми то применяется алгоритм зигзага для получения длинных последовательностей нулей

Звук в MPEG:

Форматы кодирования звука деляться на три части: Layer I, Layer II, Layer III (прообразом для Layer I и Layer II стал стандарт MUSICAM, этим именем сейчас иногда называют Layer II). Layer III достигает самого большого сжатия, но, соответственно, требует больше ресурсов на кодирование. Принципы кодирования основаны на том факте, что человеческое ухо не совершенно и на самом деле в несжатом звуке (CD-audio) передается много избыточной информации. Принцип сжатия работает на эффектах маскировки некоторых звуков для человека (например, если идет сильный звук на частоте 1000 Гц, то более слабый звук на частоте 1100 Гц уже не будет слышен человеку, также будет ослаблена чувствительность человеческого уха на период в 100 мс после и 5 мс до возникновения сильного звука). Psycoacustic (психоакустическая) модель используемая в MPEG разбивает весь частотный спектр на части, в которых уровень звука считается одинаковым, а затем удаляет звуки не воспринимаемые человеком, благодаря описанным выше эффектам.

В Layer III части разбитого спектра самые маленькие, что обеспечивает самое хорошее сжатие. MPEG Audio поддерживает совместимость Layer'ов снизу вверх, т.е. decoder (декодировщик) для Layer II будет также распознавать Layer I.

Синхронизация и объединение звука и видео, осуществляется с помощью System Stream , который включает в себя:

Системный слой, содержащий временную и другую информацию чтобы разделить и синхронизовать видео и аудио.
Компрессионный слой, содержащий видео и аудио потоки.
Видео поток содержит заголовок, затем несколько групп картинок (заголовок и несколько картинок необходимы для того, что бы обеспечить произвольный доступ к картинкам в группе в независимости от их порядка).

Звуковой поток состоит из пакетов каждый из которых состоит из заголовка и нескольких звуковых кадров (audio-frame).

Для синхронизации аудио и видео потоков в системный поток встраивается таймер, работающий с частотой 90 КГц (System Clock Reference -- SCR, метка по которой происходит увеличения временного счетчика в декодере) и Presentation Data Stamp (PDS, метка насала воспроизведения, вставляются в картинку или в звуковой кадр, чтобы объяснить декодеру, когда их воспроизводить. Размер PDS сотавляет 33 бита, что обеспечивает возможность представления любого временного цикла длинной до 24 часов).


Параметры MPEG-1 (Утверждены в 1992)

Параметры Аудио: 48, 44.1, 32 КГц, mono, dual (два моно канала), стерео, интенсивное стерео (объединяются сигналы с частотой выше 2000 Гц.), m/s stereo (один канал переносит сумму - другой разницу). Сжатие и скорость передачи звука для одного канала, для частоты 32 КГц представлены в Таблице 3.
tfn6TPox.png
Параметры Видео: в принципе с помощью MPEG-1 можно передавать разрешение вплоть до 4095x4095x60 fps (в этих границах кадр может быть произвольного размера), но так как существует Constrained Parameters Bitstream (CPB, неизменяемые параметры потока данных; другие стандарты для MPEG-1 поддерживаются далеко не всеми декодерами) которые ограничивают общее число макроблоков в картинке (396 для скорости <= 25 fps и 330 для скорости <= 30 fps) то MPEG-1 кодируется стандартом SIF /352*240*30 - (получено урезанием стандарта CCIR-601) или 352*288*25 - (урезанный PAL, SECAM) формат 4:2:0, 1.15 MBPS (мегабит в сек.), 8 bpp (бит на точку) - в каждой плоскости/.

Существует более высокое разрешение для MPEG-1 - так называемый MPEG-1 Plus, разрешение как у MPEG-2 ML@MP (Main Level, Main Profile) - этот стандарт часто используется в Set-Top-Box для улучшения качества.

MPEG2 - upgrade для MPEG1

Компрессия по стандарту MPEG-2 кардинально меняет положение вещей. Более 97% цифровых данных, представляющих видео сигнал дублируются, т.е. являются избыточными и могут быть сжаты без ущерба качеству изображения. Алгоритм MPEG-2 анализирует видеоизображение в поисках повторений, называемых избыточностью. В результате процесса удаления избыточности, обеспечивается превосходное видеоизображение в формате MPEG-2 при более низкой скорости передачи данных. По этой причине, современные средства поставки видеопрограмм, такие как цифровые спутниковые системы и DVD, используют именно стандарт MPEG-2.

Изменения в Audio:

Появились новые виды частот 16, 22.05, 24 КГц.
Поддержка многоканальности - возможность иметь 5 полноценных каналов (left, center, right, left surround, right surround) + 1 низкочастотный (subwoofer).
Появился AAC (Advanced Audio Coding - прогрессивное кодирование звука) стандарт - обеспечивает очень высокое качество звука со скоростью 64 kbps per channel (килобит в сек. на канал), возможно использовать 48 основных каналов, 16 низкочастотных каналов для звуковых эффектов, 16 многоязыковых каналов и 16 каналов данных. До 16 программ может быть описано используя любое количество элементов звуковых и других данных. Для AAC существуют три вида профиля - Main (используется когда нет лишней памяти), Low Complexity (LC), Scalable Sampling Rate (SSR, требуется декодер с изменяемой скоростью приема данных).
Декодеры должны быть:

"forwards compatible" (вперед совместимыми) - MPEG-2 Audio Decoder понимает любые MPEG-1 аудио каналы.
"backward compatible" (обратно совместимыми) - MPEG-1 Audio Decoder должен понимать ядро MPEG-2 Audio (L-канал, R-канал)
"matrixing" (матрицируемыми) - MPEG1 Audio Decoder должен понимать 5-ти канальный MPEG-2 (L = left signal + a * center signal + b * left surround signal, R = right signal + a * center signal + b * right surround signal)
MPEG-1 Звуковой декодер не обязан понимать MPEG-2 AAC.
В следствии зтого совершенно спокойно можно использовать MPEG-1 Vidio + MPEG-2 Audio или наоборот MPEG-2 Audio + MPEG-1 Video.

Изменения в Видео:

Требуется чтобы разрешение по вертикали и горизонтали было кратно 16 в кодировщике кадров (frame-encoder) стандартах (покадровое кодирование), и 32 по вертикали в кодировщике полей (field-encoder, каждое поле состоит из двух кадров) стандартах (interlaced video).
Возможность форматов 4:4:4, 4:2:2 (Next profile).
Введены понятия Profile (форма, профиль) и Levels (уровни).
Размер frame до 16383*16383.
Возможность кодировать interlaced video.
Наличие режимов масштабирования (Scalable Modes)
Pan&Scanning вектор (вектор панорамировани и масштабирования), который говорит декодеру как преобразовывать, например 16:9 в 4:3.
Изменения связаные с алгоритмами кодирования:

Точность частотных коэффициентов выбирается пользователем (8, 9, 10, 11 бит на одно значение -- в MPEG-1 только 8 бит).
Нелинейный quantization процесс (разбиение непрерыных данных в дискретные).
Возможность загрузить quantization matrix (матрица преобразований непрерыных данных в дискретные) перед каждым кадром.
Новые режимы предсказания движения (16x8 MC, field MC, Dual Prime)
Scalable Modes (доступно только в Next и Main+ Profile) делят MPEG-2 на три слоя (base, middle, high) для того чтобы организовать уровни приоритета в видеоданных (на пример более приоритетный канал кодируется с большим количеством информации по коррекции ошибок чем менее):

Spatial scalability (пространственное масштабирование) - основной слой кодируется с меньшим разрешением и затем он используется как предсказание для более приоритетных.
Data Partitioning (дробление данных) - разбивает блок из 64 quantization коэффициентов в два потока из которых более приоритетный переносит низкочастотные (наиболее критичные к качеству), а менее приоритетный (высокочастотные).
SNR (Signal to Noise Ratio) Scalability (масштабировние соотношения сигна/шум) - каналы кодируются с одинаковой скоростью, но с разным качеством (менее приоритетный слой содержит плохую картинку - более дискретные шаги, а высокоприоритетный слой содержит довесок позволяющий построить качественную картинку)
Temporal Scalability (временное масштабирование) - менее приоритетный слой содержит канал с низкой скоростью передачи кадров, а высокоприоритетный содержит информацию позволяющую восстановить промежуточные кадры используя для предсказания менее приоритетные.
tfn6TPoy.png
tfn6TPoz.png
Системный уровень MPEG-2, обеспечивает два уровня объединения данных:

Packetized Elementary Stream (PES) - разбивает звук и видео на пакеты.
Второй уровень делится на:
MPEG-2 Program Stream (совместим с MPEG-1 System) - для локальная передача в среде с маленьким уровнем ошибок
MPEG-2 Transport Stream - внешнее вещание в среде с высоким уровнем ошибок - передает транспортные пакеты (длиной 188 либо 188+16 бит) двух типов (сжатые данные -- PES -- и сигнальную таблицу Program Specific Information -- PSI).
MPEG-3 - ненужный формат

Был разработан для HDTV приложений с параметрами - максимальное разрешение (1920*1080*30), скорость 20 - 40 Mbps. Так как он не давал принципиальных улучшений по сравнению с MPEG-2 (да и к тому же MPEG-2 стал широко использоваться в разных вариантах, в том числе и для HDTV), то он благополучно вымер.

MPEG-4 - очень мощный формат

MPEG-4 - стандарт для низкоскоростной передачи (64 kbps), находящийся еще в стадии разработки. Первую версию планируется закончить в 1999 году.

Краткое описание:

Разделяет картинку на различные элементы, называемые media objects (медиа объекты).
Описывает структуру этих объектов и их взаимосвязи чтобы затем собрать их в видеозвуковую сцену.
Позволяет изменять сцену, что обеспечивает высокий уровень интерактивности для конечного пользователя .

Видеозвуковая сцена состоит из медиа объектов, которые объеденены в иархическую структуру:

Неподвижные картинки (например фон)
Видио объекты (говорящий человек).
Аудио объекты (голос связанный с этим человеком).
Текст связанный с данной сценой.
Синтетические объекты - объекты которых не было изначально в записываемой сцене, но которые туда добавляются при демонстрации конечному пользователю (например синтезируется говорящая голова).
Текст связанный с головой из которого в конце синтезируется голос.
Такой способ представления данных позволяет:

Перемещать и помещать медиа объекты в любое место сцены.
Трансформировать объекты, изменять геометрические размеры.
Собирать из отдельных объектов составной объект и проводить над ним какие-нибудь операции.
Изменять текстуру объекта (например цвет), манипулировать объектом (заставить ящик передвигаться по сцене)
Изменять точку наблюдения за сценой.
MPEG-J

MPEG-J - стандартное расширение MPEG-4 в котором используются Java - элементы.

MPEG-7

MPEG-7 - не является продолжение MPEG как такового - стал разрабатываться сравнительно недавно, планируется его закончить к 2001 г. MPEG - 7 будет обеспечивать стандарт для описания различных типов мультимедийной информации (а не для ее кодирования), чтобы обсепечивать эффективный

и быстрый ее поиск. MPEG-7 официально называют - "Multimedia Content Description Interface" (Интерфейс описания мультимедиа данных). MPEG-7 определяет стандартный набор дискриптеров для различных типов мультимедиа информации, так же он стандартизует способ определения своих дискриптеров и их взаимосвязи (description schemes). Для этой цели MPEG-7 вводит DDL (Description Definition Language - язык описания определений). Основная цель применения MPEG-7 это поиск мультимедиа информации (так же как сейчас мы можем найти текст по какому-нибудь предложению), например:

Музыка. Сыграв несколько нот на клавиатуре можно получить список музыкальных произведений, которые содержат такую последовательность.
Графика. Нарисовав несколько линий на экране, получим набор рисунков содержащих данный фрагмент.
Картины. Определив объект (задав его форму и текстуру) получим список картин, содержащих оный.
Видео. Задав объект и движение получим набор видео или анимации.
Голос. Задав фрагмент голоса певца, получим набор песен и видео роликов где он поет.
MHEG

MHEG - (Multimedia & Hypermedia Expert Group -- экспертная группа по мультимедиа и гипермедиа) - определяет стандарт для обмена мультимедийными объектами (видео, звук, текст и другие произвольные данные) между приложениями и передачи их разными способами (локальная сеть, сети телекоммуникаций и вещания) с использованием MHEG object classes. Он позволяет программным объектам включать в себя любую систему кодирования (например MPEG), которая определена в базовом приложении. MHEG был принят DAVIC (Digital Audio-Visual Council -- совет по цифровому видео и звуку). MHEG объекты делаются мультимедиа приложениями используя multimedia scripting languages.

Утверждается, что MHEG - будущий международный стандарт для интерактивного TV, так как он работает на любых платформах и его документация свободно распространяема.
Ответить

Вернуться в «Статьи»

  • Информация